- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Tomassini, Andrea (2)
-
Zhang, Yang (2)
-
Zheng, Yeting (2)
-
Captain, Burjor (1)
-
Gong, Xiayi (1)
-
Hayter, Colin E (1)
-
Hayter, Colin E. (1)
-
Liu, Yunshu (1)
-
Piedra, William M (1)
-
Raymo, Francisco M. (1)
-
Raymo, Françisco M (1)
-
Shahid, Md Abul (1)
-
Singh, Ambarish Kumar (1)
-
Singh, Amrita (1)
-
Singh, Keiran I (1)
-
Sortino, Salvatore (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
Kanaras, Antonios G. (1)
-
Osiński, Marek (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 20, 2026
-
Zhang, Yang; Zheng, Yeting; Tomassini, Andrea; Hayter, Colin E.; Raymo, Francisco M. (, Proceedings of SPIE)Osiński, Marek; Kanaras, Antonios G. (Ed.)Single-molecule localization microscopy (SMLM) strategies based on fluorescence photoactivation permit the imaging of live cells with subdiffraction resolution and the high-throughput tracking of individual biomolecules in their interior. They rely predominantly on genetically-encoded fluorescent proteins to label live cells selectively and allow the sequential single-molecule localization of sparse populations of photoactivated fluorophores. Synthetic counterparts to these photoresponsive proteins are limited to a few remarkable examples at the present stage, mostly because of the daunting challenges in engineering biocompatible molecular constructs with appropriate photochemical and photophysical properties for live-cell SMLM. Our laboratory developed a new family of synthetic photoactivatable fluorophores specifically designed for these imaging applications. They combine a borondipyrromethene (BODIPY) fluorophore and an ortho-nitrobenzyl (ONB) photocage in a single molecular skeleton. The photoinduced ONB cleavage extends electronic delocalization to shift bathochromically the BODIPY absorption and emission bands. As a result, these photochemical transformations can be exploited to switch fluorescence on in a spectral region compatible with bioimaging applications and allow the localization of the photochemical product at the single-molecule level. Furthermore, our compounds can be delivered and operated in the interior of live cells to enable the visualization of organelles with nanometer resolution and the intracellular tracking of single photoactivated molecules.more » « less
An official website of the United States government
